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Overview

Complete information assumption implies players know others’ payoffs.
Examples:

- goal keeper may not really know how effortful it is for the penalty kicker to shoot
right instead of left;

- firms may not know other firms’ cost structure;

- voters may not know how other voters’ preferences;

- consumers may be unsure of how much they value a good;

- investors may not know what is the value of an asset;

- firm may not know how productive a given job candidate is;

- aresearcher may not know how difficult a problem they’re working on is.
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Overview

Complete information assumption implies players know others’ payoffs.
Examples:

- goal keeper may not really know how effortful it is for the penalty kicker to shoot
right instead of left;

- firms may not know other firms’ cost structure;

- voters may not know how other voters’ preferences;

- consumers may be unsure of how much they value a good;

- investors may not know what is the value of an asset;

- firm may not know how productive a given job candidate is;

- aresearcher may not know how difficult a problem they’re working on is.

Today’s agenda: formalising games of incomplete information and examining
applications.
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Overview

2. Bayesian Games
— Representing Incomplete Information



Representing Incomplete Information

Definition

A game is of incomplete information when at least one player does not know the payoff
that some player receives from some strategy profile.

How to model uncertainty?

Harsanyi's modelling insight:

Transform incomplete info game into complete info with Nature moving at start of
game.

Realisation of nature’s actions determines players’ payoffs.
Assumption: CK of prob. distrib. used by Nature.

Players have a belief about others’ preferences and there is common knowledge of
such beliefs.



Representing Incomplete Information

Definition

A game is of incomplete information when at least one player does not know the payoff
that some player receives from some strategy profile.

How to model uncertainty?
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Representing Incomplete Information

Definition
A game is of incomplete information when at least one player does not know the payoff
that some player receives from some strategy profile.

How to model uncertainty?

Harsanyi's modelling insight:
Transform incomplete info game into complete info with Nature moving at start of

game.
Realisation of nature’s actions determines players’ payoffs.

Assumption: CK of prob. distrib. used by Nature.
Players have a belief about others’ preferences and there is common knowledge of

such beliefs.
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Representing Incomplete Information

{ Definition
A Bayesian game is a tuple (/,A, u, ®, p), where
(i) Players: [,
(i) Player f's action space A;; Space of action profiles a € A := X;c/A;;
(iii) Player i's type space ®;; Space of type profiles © = X;¢/0;
(iv) Player i's utility/payoff function: u; : A x ® — R; u := (Uj);c; and
)

(v) Probability distribution over players’ type profiles: p € A(®).
All elements are common knowledge, but each player i only knows their own type 6;,

and not the other players’ types.

Players privately learn their own type. (WLOG)
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Representing Incomplete Information

Definition

e Players have private values iff uj(a, 8, 6_;) = u;(a 6;,6";) V6_;,0"; € ®_. Other-
wise, they have interdependent values.

Could also consider alternative notions of incomplete information: e.g., uncertainty over
what is the strategy set of the opponent.



Representing Incomplete Information

Definition

e Players have private values iff uj(a, 8, 6_;) = u;(a 6;,6";) V6_;,0"; € ®_. Other-
wise, they have interdependent values.

e Players have independent types iff types are independent across players. Other-
wise, they have correlated types.
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Representing Incomplete Information

Definition

e Players have private values iff uj(a, 8, 6_;) = u;(a 6;,6";) V6_;,0"; € ®_. Other-
wise, they have interdependent values.

e Players have independent types iff types are independent across players. Other-
wise, they have correlated types.

Could also consider alternative notions of incomplete information: e.g., uncertainty over
what is the strategy set of the opponent.
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Representing Incomplete Information

Definition

A pure strategy of player j in a Bayesian game is a mapping s; : ©; — A;.

Strategy specifies action for each possible type.
Player I's expected payoff: {j(s) = Egnpluj(51(61),52(82), ... 5/(6)), ;, 6-))].
Extend ; to mixed strategies, 6; € L; := A(S)).
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Representing Incomplete Information

Two classmates, A and B, considering whether to work together.
They work together iff both agree to do so.
If they work alone, payoffs normalised to 0.

If they work together B always gets 10 (improves their grade by 10). However, how
much A benefits from working with B depends on B’s type.

If B is collaborative (wp o), A also gets a payoff of 10. But if B is a shirker (wp 1 - ), then
A gets a payoff of -6.
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Representing Incomplete Information

Two classmates, A and B, considering whether to work together.
They work together iff both agree to do so.
If they work alone, payoffs normalised to 0.

If they work together B always gets 10 (improves their grade by 10). However, how
much A benefits from working with B depends on B’s type.

If B is collaborative (wp o), A also gets a payoff of 10. But if B is a shirker (wp 1 - ), then
A gets a payoff of -6.

If oo =1o0ra =0, what are the NE?
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Representing Incomplete Information

Two classmates, A and B, considering whether to work together.
They work together iff both agree to do so.
If they work alone, payoffs normalised to 0.

If they work together B always gets 10 (improves their grade by 10). However, how
much A benefits from working with B depends on B’s type.

If B is collaborative (wp o), A also gets a payoff of 10. But if B is a shirker (wp 1 - ), then
A gets a payoff of -6.

If oo =1o0ra =0, what are the NE?

What are the strategies of this Bayesian game?
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Representing Incomplete Information

Two classmates, A and B, considering whether to work together.
They work together iff both agree to do so.
If they work alone, payoffs normalised to 0.

If they work together B always gets 10 (improves their grade by 10). However, how
much A benefits from working with B depends on B’s type.

If B is collaborative (wp o), A also gets a payoff of 10. But if B is a shirker (wp 1 - ), then
A gets a payoff of -6.

If oo =1o0ra =0, what are the NE?

What are the strategies of this Bayesian game?

Table:6g = C Table:6g = S

B B
W N W N
A w 10,710 0,0 A W -6,710 0,0
N 0,0 0,0 N 0,0 0,0
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Universal Type Space

Are Bayesian games sufficiently rich to capture all kinds of incomplete information?
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Universal Type Space

Are Bayesian games sufficiently rich to capture all kinds of incomplete information?
Higher-order uncertainty and belief hierarchy

- Uncertainty about others’ preferences

- Uncertainty about others’ uncertainty about one’s preferences

- Uncertainty about others’ uncertainty about one’s uncertainty about others’
preferences

- Uncertainty about ....
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Universal Type Space

Are Bayesian games sufficiently rich to capture all kinds of incomplete information?
Higher-order uncertainty and belief hierarchy

- Uncertainty about others’ preferences

- Uncertainty about others’ uncertainty about one’s preferences

- Uncertainty about others’ uncertainty about one’s uncertainty about others’
preferences

- Uncertainty about ....
Type should capture the entire belief hierarchy.

Can we capture rich uncertainty just with set of types and distribution over types?
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Universal Type Space

Are Bayesian games sufficiently rich to capture all kinds of incomplete information?
Higher-order uncertainty and belief hierarchy

- Uncertainty about others’ preferences

- Uncertainty about others’ uncertainty about one’s preferences

- Uncertainty about others’ uncertainty about one’s uncertainty about others’
preferences

- Uncertainty about ....
Type should capture the entire belief hierarchy.
Can we capture rich uncertainty just with set of types and distribution over types?
Yes, with a universal type space (Mertens & Zamir (1985); Bradenburger & Dekel (1993))
Reassuring that Bayesian games are good tool.
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Overview

3. Bayesian Nash Equilibrium
— Ex-ante vs Interim perspective



Bayesian Nash Equilibrium

Definition

A Bayesian Nash Equilibrium of a Bayesian game (/,A, u, ®, p) is a strategy profile s =
(si)igs such that vi,vs{ € S;, Tj(s;, s-j) > Tj(s], s-)).
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Bayesian Nash Equilibrium

Definition

A Bayesian Nash Equilibrium of a Bayesian game (/,A, u, ®, p) is a strategy profile s =
(si)igs such that vi,vs{ € S;, Tj(s;, s-j) > Tj(s], s-)).

NB: consider Bayesian game I" = (/,A, u, ®, p) as standard normal-form game
I'=(,S10).
Set of BNE of I' is the same as set of NE of I,
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Bayesian Nash Equilibrium

Definition

A Bayesian Nash Equilibrium of a Bayesian game (/,A, u, ®, p) is a strategy profile s =
(si)igs such that vi,vs{ € S;, Tj(s;, s-j) > Tj(s], s-)).

NB: consider Bayesian game I" = (/,A, u, ®, p) as standard normal-form game
I'=(,S10).

Set of BNE of I' is the same as set of NE of I,

Can tweak NE existence theorems to work for BNE.

Gongalves (UCL) 12. Incomplete Information




Bayesian Nash Equilibrium

Definition

A Bayesian Nash Equilibrium of a Bayesian game (/,A, u, ®, p) is a strategy profile s =
(si)igs such that vi,vs{ € S;, Tj(s;, s-j) > Tj(s], s-)).

NB: consider Bayesian game I" = (/,A, u, ®, p) as standard normal-form game
I'=(,S10).

Set of BNE of I' is the same as set of NE of I,

Can tweak NE existence theorems to work for BNE.

Corollary

For any Bayesian game I" s.t. |/],|Al, I®] < oo, 3 Bayesian Nash equilibrium (possibly in
mixed strategies).
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Ex-ante vs Interim perspective

Ex-ante Perspective:
1. players choose strategies, (distrib. over) mappings from types to actions, to
maximise ex-ante expected payoff;

2. types are drawn according to p;
3. players learn their own types and play according to their actions;
4. outcomes and payoffs realise.
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Ex-ante vs Interim perspective

Ex-ante Perspective:

1. players choose strategies, (distrib. over) mappings from types to actions, to
maximise ex-ante expected payoff;

2. types are drawn according to p;
3. players learn their own types and play according to their actions;
4. outcomes and payoffs realise.
Interim perspective:
1. types are drawn according to p;

2. players learn their own types, form beliefs about others’ types g;(- | 6;), and play
according to their actions;

3. players choose (distrib. over) actions, to maximise (ex-interim) expected payoff,
knowing their type, but not opponents’ types;

4. outcomes and payoffs realise.
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Ex-ante vs Interim perspective

Ex-ante Perspective:

1. players choose strategies, (distrib. over) mappings from types to actions, to
maximise ex-ante expected payoff;

2. types are drawn according to p;
3. players learn their own types and play according to their actions;
4. outcomes and payoffs realise.
Interim perspective:
1. types are drawn according to p;

2. players learn their own types, form beliefs about others’ types g;(- | 6;), and play
according to their actions;

3. players choose (distrib. over) actions, to maximise (ex-interim) expected payoff,
knowing their type, but not opponents’ types;

4. outcomes and payoffs realise.

Arguably more sensible description of a game of incomplete information.
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Ex-Ante vs Interim perspective

Definition
An ex-interim Bayesian game is a tuple (/,A, u, ®, ), where
(i) Players:;

(i) Player 's action space A;; Space of action profiles a € A := X;c/A;;

(iv) Player i's utility/payoff function: u; : A x ® — R; u := (u;);;; and

)
)

(iii) Player f's type space @;; Space of type profiles © = X;¢/0;
)

(v) Ex-interim Belief/Prob. distrib. over opponents’ type profiles: g; : ©®; — A(6_)).
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Ex-Ante vs Interim perspective

Proposition

A strategy profile 6 is a BNE if and only if Vi € / and V6, € ©; : p(6,) > 0,

Eo ,[Ui(0/(8)), 5-1(6-7),8,,6-) | 8] > Eq [ui(c/(8)),5-,(6-),8,,6-;) | 8]], Yo, € A(A)®"
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Ex-Ante vs Interim perspective

Proposition
A strategy profile 6 is a BNE if and only if Vi € / and V6, € ©; : p(6,) > 0,

Eo ,[Ui(0/(8)), 5-1(6-7),8,,6-) | 8] > Eq [ui(c/(8)),5-,(6-),8,,6-;) | 8]], Yo, € A(A)®"

NB: Possible to find pi € A(@) : p,-(O,,- | 6,-) = q,-(e,,- | 9,‘) VG,-, 6,,-
(going beyond finite case introduces technical complications).

However: players may not start with common prior: p; = p; for all j, .
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Ex-Ante vs Interim perspective

Proposition
A strategy profile 6 is a BNE if and only if Vi € / and V6, € ©; : p(6,) > 0,

Eo ,[Ui(0/(8)), 5-1(6-7),8,,6-) | 8] > Eq [ui(c/(8)),5-,(6-),8,,6-;) | 8]], Yo, € A(A)®"

NB: Possible to find pi € A(@) : p,-(O,,- | 6,-) = q,-(e,,- | 9,‘) VG,-, 97,'
(going beyond finite case introduces technical complications).

However: players may not start with common prior: p; = p; for all j, .
Common prior necessary for equivalence between ex-ante BNE and interim BNE.
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Ex-Post Bayesian Nash Equilibrium

Definition

A strategy profile ¢ is an ex-post Bayesian Nash equilibrium iff Vi, u;(c;(0;), 6—;(6—;),8) >
uj(aj, 6-(6-), 8), va;, 6.
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Ex-Post Bayesian Nash Equilibrium

Definition

A strategy profile ¢ is an ex-post Bayesian Nash equilibrium iff Vi, u;(c;(0;), 6—;(6—;),8) >
uj(aj, 6-(6-), 8), va;, 6.

Interpretation: Even if players learn others’ types, they would not like to change their
actions, given that others are following their strategies.

Note: ex-post BNE yields NE for each game indexed by 6.

Gongalves (UCL) 12. Incomplete Information 12



Ex-Post Bayesian Nash Equilibrium

Definition
A strategy profile ¢ is an ex-post Bayesian Nash equilibrium iff i, u;(;(8;), 6_;(6-,), )
ui(aj, 0-i(8-),8), va; 8.

>

Interpretation: Even if players learn others’ types, they would not like to change their
actions, given that others are following their strategies.

Note: ex-post BNE yields NE for each game indexed by 6.

True or false? There is always an ex-post BNE.
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Ex-Post Bayesian Nash Equilibrium

Definition

A strategy profile ¢ is an ex-post Bayesian Nash equilibrium iff Vi, u;(c;(0;), 6—;(6—;),8) >
uj(aj, 6-(6-), 8), va;, 6.

Interpretation: Even if players learn others’ types, they would not like to change their
actions, given that others are following their strategies.

Note: ex-post BNE yields NE for each game indexed by 6.

True or false? There is always an ex-post BNE.

Table:6g = C Table:6g = S

B B
W N N
A W 10,70 10,0 A W -1,710 -1,0
N 0,1 0,0 N 0 0,0
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Strategy-Proofness

Closely related to “Very weak dominance”: s; : u;(s;(6;),a-;,0;,0_;) > U;(a;, s-;,6;,0-)),
Vaj, a-;, vo.
Allows for indifferences.
Also said Strategy-proofness, esp. when A; = @;.
You'll hear this term a lot.
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Overview

4. Auctions
— 2nd-Price Auction
— Envelope Theorem
— Tst-Price Auction
— Revenue Equivalence



2nd-Price Auction

2nd-Price Auction: winner pays second highest bid.
ui(a a-,vi) = Wi € argmax; a;}(v; — max;; a;)/| arg max; ajl

When F; is degenerate for every i, a; = v; is weakly dominant for all players (hence a NE?).
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2nd-Price Auction

2nd-Price Auction: winner pays second highest bid.

ui(a a-,vi) = Wi € argmax; a;}(v; — max;; a;)/| arg max; ajl

When F; is degenerate for every i, a; = v; is weakly dominant for all players (hence a NE?).
Independent private values. (What does this mean?)

v; ~ F;, vi independent from other types.
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2nd-Price Auction

2nd-Price Auction: winner pays second highest bid.

ui(a a-,vi) = Wi € argmax; a;}(v; — max;; a;)/| arg max; ajl

When F; is degenerate for every i, a; = v; is weakly dominant for all players (hence a NE?).

Independent private values. (What does this mean?)
vj ~ F;, v; independent from other types.

s; : si(v;) = v; still weakly dominant for all players? Is it a BNE? What does it depend on?
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Bayesian Games

Informationally robust (although perhaps counterintuitive to people.)
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Bayesian Games

Informationally robust (although perhaps counterintuitive to people.)

Alternative: Ascending auction.
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Bayesian Games

Informationally robust (although perhaps counterintuitive to people.)

Alternative: Ascending auction. People understand it better and play weakly dominant
strategy more often.

With good reasons: Obviously Strategy-Proof (Li, 2017 AER)
Roughly, worst case scenario better than best-case scenario from deviation.
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Envelope Theorem

What is the envelope theorem?
Relate effect of parameter on value function to its effect on the objective function.
Useful tool to characterise how maximisers change with parameters too!
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Envelope Theorem

What is the envelope theorem?
Relate effect of parameter on value function to its effect on the objective function.

Useful tool to characterise how maximisers change with parameters too!

Choice set X.
Parameter t € [0,1] (think directional derivative in normed vector space)

Objective function: f : X x [0,1] — R.
Value function: V(t) := sup,¢x f(x, t); Maximisers X*(t) := {x € X : f(x,t) = V(t)}.
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Envelope Theorem

What is the envelope theorem?

Relate effect of parameter on value function to its effect on the objective function.

Useful tool to characterise how maximisers change with parameters too!
Choice set X.

Parameter t € [0,1] (think directional derivative in normed vector space)
Objective function: f : X x [0,1] — R.

Value function: V(t) := sup,¢x f(x, t); Maximisers X*(t) := {x € X : f(x,t) = V(t)}.

Theorem 1 (Milgrom & Segal 2002 Ecta)

Take any x* € X*(t) and t € [0, 1], and suppose f{(x*, 1) exists.
(1) Fort> 0, if Vis left-differentiable at t, V/(t7) < f{(x*,1).
(2) Fort<1,if Vis right-differentiable at t, V/(t*) > f{(x*,1).
(3) Fort e (0,1),if Vis differentiable at t, then V'(t) = f{(x*, 1).
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Envelope Theorem

It would be sufficient to ensure V is differentiable a.e. to get

Theorem 2 (Milgrom & Segal 2002 Ecta)

Take any x* € X*(t) and t € [0, 1], and suppose f{(x*, 1) exists.
(1) If f(x,-) is absolutely continuous for all x € X and there is an integrable function
b :[0,1] — R+ such that |f{(x, )| < b(t) Vx € X and almost all t € [0, 1], then V is
absolutely continuous.




Envelope Theorem

It would be sufficient to ensure V is differentiable a.e. to get

Theorem 2 (Milgrom & Segal 2002 Ecta)

Take any x* € X*(t) and t € [0, 1], and suppose f{(x*, 1) exists.

(1) If f(x,-) is absolutely continuous for all x € X and there is an integrable function
b :[0,1] — R+ such that |f{(x, )| < b(t) Vx € X and almost all t € [0, 1], then V is
absolutely continuous.

(2) If, in addition, f(x, -) is differentiable for all x € X and X* is nonempty-valued a.e.
on [0, 1], then for any selection x*(t) € X*(t),

V() = V(0) + /O 100 (9),9) ds
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Envelope Theorem

It would be sufficient to ensure V is differentiable a.e. to get

Theorem 2 (Milgrom & Segal 2002 Ecta)

Take any x* € X*(t) and t € [0, 1], and suppose f{(x*, 1) exists.

(1) If f(x,-) is absolutely continuous for all x € X and there is an integrable function
b :[0,1] — R+ such that |f{(x, )| < b(t) Vx € X and almost all t € [0, 1], then V is
absolutely continuous.

(2) If, in addition, f(x, -) is differentiable for all x € X and X* is nonempty-valued a.e.
on [0, 1], then for any selection x*(t) € X*(t),

V() = V(0) + /O 100 (9),9) ds

Note: V need not be differentiable everywhere (may have kinks).
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Tst-Price Auction

Back to auctions: 1st-Price Auction: winner pays highest bid.

I bidders with valuations 0 < v; and v; ~ F iid, F atomless and absolutely
continuous, bounded support V; = [v,V]

Bids: a; > 0.
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Tst-Price Auction

Back to auctions: 1st-Price Auction: winner pays highest bid.
I bidders with valuations 0 < v; and v; ~ F iid, F atomless and absolutely
continuous, bounded support V; = [v,V]
Bids: a; > 0. Strategies: s; : V; — R+
Payoffs

1

ur(af.a—/, V/) = 1alemax]€,{aj)m(vi - a/)

Get zero if do not bid highest.
Get item if bid highest and pay own bid; uniform tie-breaking.
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Tst-Price Auction

Back to auctions: 1st-Price Auction: winner pays highest bid.

I bidders with valuations 0 < v; and v; ~ F iid, F atomless and absolutely
continuous, bounded support V; = [v,V]

Bids: a; > 0. Strategies: s; : V; — R+

Payoffs
1

ui(aj, a-,v;) = 1alemax]€,{aj)m(vi - a))
Get zero if do not bid highest.
Get item if bid highest and pay own bid; uniform tie-breaking.

NB: s;(v;) = v; is weakly dominated in 1PA!
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Tst-Price Auction

Solving for a symmetric PS-BNE (s™);,
Assume: s* is strictly increasing, differentiable.

s* strictly increasing + F atomless = zero prob. of two identical bids.
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Tst-Price Auction

Solving for a symmetric PS-BNE (s™);,
Assume: s* is strictly increasing, differentiable.
s* strictly increasing + F atomless = zero prob. of two identical bids.

Expected payoff from bidding a; given type v; and opponents bidding according to

*

ST

u(a;,v;) = P(a; > n?7a1>< s* (), — &)
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Tst-Price Auction

Solving for a symmetric PS-BNE (s™);,
Assume: s* is strictly increasing, differentiable.
s* strictly increasing + F atomless = zero prob. of two identical bids.

Expected payoff from bidding a; given type v; and opponents bidding according to

*

ST
u(a;,v,) = P(a; > maxs "V - a)
= P(a; > s*(v))(vi ~ &)

= F((s") @) v - a).
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Tst-Price Auction

Solving for a symmetric PS-BNE (s*)je,
Assume: s* is strictly increasing, differentiable.

s* BRtos™:

u(@,v) = F(s") @) - a).
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Tst-Price Auction

Solving for a symmetric PS-BNE (s*)je,
Assume: s* is strictly increasing, differentiable.

s* BRtos™:
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Tst-Price Auction

Solving for a symmetric PS-BNE (s™);
Assume: s* is strictly increasing, differentiable. (check later)

s* strictly increasing = s*(v) wins auction wp0 = U(v) = 0.
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Tst-Price Auction

Solving for a symmetric PS-BNE (s™);
Assume: s* is strictly increasing, differentiable. (check later)

s* strictly increasing = s*(v) wins auction wp0 = U(v) = 0.

(@) ua;,v)) = F(s*) (@)""(v; - a) differentiable in v;.
(b) U(v)) = F(v))"(v; = s*(v))) differentiable.
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Tst-Price Auction

Solving for a symmetric PS-BNE (s™);
Assume: s* is strictly increasing, differentiable. (check later)
s* strictly increasing = s*(v) wins auction wp0 = U(v) = 0.
(@) ua;,v)) = F(s*) (@)""(v; - a) differentiable in v;.
(b) U(v)) = F(v))"(v; = s*(v))) differentiable.
Use envelope theorem:

V') = Ul @1Vl s () = FIS™) T @) Mymgrgy = FO) @)
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Tst-Price Auction

Solving for a symmetric PS-BNE (s™);
Assume: s* is strictly increasing, differentiable. (check later)
s* strictly increasing = s*(v) wins auction wp0 = U(v) = 0.
(@) ua;,v)) = F(s*) (@)""(v; - a) differentiable in v;.
(b) U(v)) = F(v))"(v; = s*(v))) differentiable.
Use envelope theorem:

V() = Ul (@1 Wl =oe ) = FUS) @) sy = FO) @
Fundamental theorem of calculus:
Vi Vi
U(v) = UW) + / V) dv = / U dv = @®)
v v
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Tst-Price Auction

Solving for a symmetric PS-BNE (s™);
Putting it all together:
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Tst-Price Auction

Solving for a symmetric PS-BNE (s*),

Properties of s*
Strictly increasing

s*(V +e) - s*(V)
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Tst-Price Auction

Solving for a symmetric PS-BNE (s*),

Properties of s*
Strictly increasing
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Tst-Price Auction

Solving for a symmetric PS-BNE (s*),

Properties of s*
Strictly increasing

SV +e) =" (V)

—e- /vv/+e <F(C/(:)e))/1 dv+/j (lf((\;)))uu

_ v/ +e v/ +e F(V) -1 v -
_/V, 1dv /z <F(v’+e)) dv+/! (F
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Tst-Price Auction

Solving for a symmetric PS-BNE (s*),

Properties of s*
Strictly increasing

AT

- /VV/+e <F(C’(?e))/1 dv + /V/ (l"__:((\:’)))”|1 dv

~—
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Tst-Price Auction

Solving for a symmetric PS-BNE (3*)/@

Properties of s*
Strictly increasing

s* (V' +e) - s*(V)

=e- /VMe <F(C'(V) ))’1 dv+/V/ (If((\;)))uu N
:/V,v,+e1dv_/vv/ <F(C/(\;)e))/1 . !v (/:F((\;)))III 1< t/: )
e () e [ (29

t+e
+e
+e

v+
v+

F(v) W\ F + )T = F I
F(v/+e)) Y (v’)) Fv/ + )T
Ve £y 4+ g)lImT - F(y) i F)\"™ R/ + )T = F(yliT
§ /V Fv/ + )l dv+/! ( F(v/ )) Fuvgt 70
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Tst-Price Auction

Solving for a symmetric PS-BNE (s™);

Properties of s*
Strictly increasing.
Differentiable (immediate).
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Tst-Price Auction

Solving for a symmetric PS-BNE (s™);

Properties of s*
Strictly increasing.
Differentiable (immediate).
Bid less than value s*(v;) < v; forv; >v. = U(v;) > 0.
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Tst-Price Auction

Solving for a symmetric PS-BNE (s™);

WT check s* is optimal.

Gongalves (UCL) 12. Incomplete Information
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Tst-Price Auction

Solving for a symmetric PS-BNE (s™);

WT check s* is optimal.
Takeanyv; € Vijanda; > 0.
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Tst-Price Auction

Solving for a symmetric PS-BNE (s™);

WT check s* is optimal.
Takeanyv; € Vijanda; > 0.

Claim: Given others play s*, s*(v;) does weakly better than a; Va; ¢ [s*(v), s*(V)].
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Tst-Price Auction

Solving for a symmetric PS-BNE (s™);

WT check s* is optimal.
Takeanyv; € Vijanda; > 0.

Claim: Given others play s*, s*(v;) does weakly better than a; Va; ¢ [s*(v), s*(V)].

Ifa; <v=s"(v) then 0 = u(a; v;) = UW) < UW).
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Tst-Price Auction

Solving for a symmetric PS-BNE (s™);

WT check s* is optimal.
Takeanyv; € Vijanda; > 0.

Claim: Given others play s*, s*(v;) does weakly better than a; Va; ¢ [s*(v), s*(V)].

Ifa; <v=s"(v) then 0 = u(a; v;) = UW) < UW).
If a; > s*(V), then u(a;,v;) = v; —a; < v; = s*(V).

Gongalves (UCL) 12. Incomplete Information
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Tst-Price Auction

Solving for a symmetric PS-BNE (s™);

WT check s* is optimal.
Takeanyv; € Vijanda; > 0.

Claim: Given others play s*, s*(v;) does weakly better than a; Va; € [s*(v), s*(V)].
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Tst-Price Auction

Solving for a symmetric PS-BNE (s™);

WT check s* is optimal.
Takeanyv; € Vijanda; > 0.
Claim: Given others play s*, s*(v;) does weakly better than a; Va; € [s*(v), s*(V)].
NB: s* continuous and strictly increasing = 3l : a; = s*(v/) Va; € [s*(v),s*(V)].

U(v)) - u(a, vi) = U(vj) = U(v)) + U(v)) = u(s™ (v)), v)
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Tst-Price Auction

Solving for a symmetric PS-BNE (s™);

WT check s* is optimal.
Takeanyv; € Vijanda; > 0.
Claim: Given others play s*, s*(v;) does weakly better than a; Va; € [s*(v), s*(V)].
NB: s* continuous and strictly increasing = 3l : a; = s*(v/) Va; € [s*(v),s*(V)].

U(v)) - u(a, vi) = U(vj) = U(v)) + U(v)) = u(s™ (v)), v)

Vi v/

= U(v)) = UW)) + u(s™ (v)), V) = u(s™(v)). v)) = / TACK(NY) dv+/ AKX

v/ Vi
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Tst-Price Auction

Solving for a symmetric PS-BNE (s™);

WT check s* is optimal.
Takeanyv; € Vijanda; > 0.
Claim: Given others play s*, s*(v;) does weakly better than a; Va; € [s*(v), s*(V)].
NB: s* continuous and strictly increasing = 3l : a; = s*(v/) Va; € [s*(v),s*(V)].

U(v)) - u(a, vi) = U(vj) = U(v)) + U(v)) = u(s™ (v)), v)

Vi v/

= U(v)) = UW)) + u(s™ (v)), V) = u(s™(v)). v)) = / TACK(NY) dv+/ AKX

v/ Vi

= /V’ (F(v)w_1 - F(v,()m_1) dv.

’
i

If v; > v/, then F(v) > F(v]) forany v € [v/,v]] = U(v;) - u(a;,v;) > 0.
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Tst-Price Auction

Solving for a symmetric PS-BNE (s™);

WT check s* is optimal.
Takeanyv; € Vijanda; > 0.
Claim: Given others play s*, s*(v;) does weakly better than a; Va; € [s*(v), s*(V)].
NB: s* continuous and strictly increasing = 3l : a; = s*(v/) Va; € [s*(v),s*(V)].
If v; < v/, then

Ui(vi) = ui(ai, v;) = Ui(v)) = Ui(vj) + Ui(v)) = ui(s™ (v}), v;)
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Tst-Price Auction

Solving for a symmetric PS-BNE (s™);

WT check s* is optimal.
Takeanyv; € Vijanda; > 0.
Claim: Given others play s*, s*(v;) does weakly better than a; Va; € [s*(v), s*(V)].
NB: s* continuous and strictly increasing = 3l : a; = s*(v/) Va; € [s*(v),s*(V)].
If v; < v/, then

Ui(vp) = ui(@;, vj) = Ui(vy) = Ui(vi) + Ui(v)) = ui(s™ (v}, v))
- / ! (F)"™ = F0)"™) dv

/
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Tst-Price Auction

Solving for a symmetric PS-BNE (s™);

WT check s* is optimal.
Takeanyv; € Vijanda; > 0.
Claim: Given others play s*, s*(v;) does weakly better than a; Va; € [s*(v), s*(V)].
NB: s* continuous and strictly increasing = 3l : a; = s*(v/) Va; € [s*(v),s*(V)].
If v; < v/, then

and F(v)) > F(v) forany v € [v;,v]] =
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Revenue Equivalence

Revenue Equivalence Theorem: Any auction setting such that
(i) bidders’ types are their valuation, drawn independently from compact convex set,
(ii) the object is allocated to the bidder with the highest valuation,

(i) a bidder with the lowest possible valuation (v) gets 0 in expected payoff in
equilibrium
generates the same expected revenue to the auctioneer as the 2PA.
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Revenue Equivalence

VKD k-th highest valuation out of / bidders.

— Revenue in 2PA: V2.

Gongalves (UCL) 12. Incomplete Information
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Revenue Equivalence

VKD k-th highest valuation out of / bidders.
— Revenue in 2PA: V2.
Bids in TPA:
*ON = VRN T L 141 11

v
= v /v sdF™(s) (Integration by parts)

S BV <y
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Revenue Equivalence

VKD k-th highest valuation out of / bidders.
— Revenue in 2PA: V2.
Bids in TPA:
*ON = VRN T L 141 11

v
= v /v sdF™(s) (Integration by parts)

S BV <y

—> Revenue in TPA:
S*(VH) - E[V1:/f‘llv1:/f1 < V‘I:/]
Revenue Equivalence: E[V?'] = EEE[V V1 < v

Gongalves (UCL) 12. Incomplete Information



Overview

5. Purification Theorem



Purification Theorem
MSNE hard to justify: although player is indifferent, they need to randomise in very
particular way to make opponents indifferent as well.

Purification: Harsanyi (1973) provided a justification for MSNE of a normal-form game
I' = (I,S,u) as a limit case of perturbed games.

Suppose true preference is unobserved by opponents (random) and given by
Cl,'(S, 9,‘) = U,‘(S) + 89,‘3
where 67 are independent across players and drawn from a distribution F; with
density f;.
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Purification Theorem

MSNE hard to justify: although player is indifferent, they need to randomise in very
particular way to make opponents indifferent as well.

Purification: Harsanyi (1973) provided a justification for MSNE of a normal-form game
I' = (I,S,u) as a limit case of perturbed games.
Suppose true preference is unobserved by opponents (random) and given by
Ui(s,8;) == uj(s) + €67
where 67 are independent across players and drawn from a distribution F; with
density f;.

Theorem

Fix afinite set of players | and strategy spaces S;. For almost all payoff vectors u = (u;);
and for all independent and twice-differentiable densities f; on [-1,1]'®, any mixed strat-
egy Nash equilibrium of the normal-form game I' = (/, S, u) is the limite of a sequence
of pure strategy Bayesian Nash equilibria of the Bayesian game with perturbed payoffs
(ier-
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Purification Theorem

MSNE hard to justify: although player is indifferent, they need to randomise in very
particular way to make opponents indifferent as well.

Purification: Harsanyi (1973) provided a justification for MSNE of a normal-form game
I' = (I,S,u) as a limit case of perturbed games.

Suppose true preference is unobserved by opponents (random) and given by
Cl,'(S, 9,‘) = U,‘(S) + 89,‘3

where 67 are independent across players and drawn from a distribution F; with
density f;.

Theorem

Fix afinite set of players | and strategy spaces S;. For almost all payoff vectors u = (u;);
and for all independent and twice-differentiable densities f; on [-1,1]'®, any mixed strat-
egy Nash equilibrium of the normal-form game I' = (/, S, u) is the limite of a sequence
of pure strategy Bayesian Nash equilibria of the Bayesian game with perturbed payoffs
(ier-

Note the limits of the result: “for almost all payoff vectors”
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Higher-Order Beliefs

Coordination Game (bank runs, currency attacks)

Col Player
Invest  Not Invest
Row Player Invest 0,0 06-10
Not Invest 0,0 -1 0,0

Complete Information. NE?

0 < 0: Not invest is strictly dominant and (NI,NI) the unique NE.
0 > 1: Invest is strictly dominant and (1,1) the unique NE.

8 € [0,1]: (NLNI), (1), and mixed is NE.
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Higher-Order Beliefs

Coordination Game (bank runs, currency attacks)

Col Player
Invest  Not Invest
Row Player Invest 0,0 06-10
Not Invest 0,0 -1 0,0

Incomplete Information

Suppose both players observe a signal about the state 6.

0, =0 +¢g, & ~ N(0,062) iid.

016, ~ N(6;,6%), because = 6, — ¢;
016,:=6106+¢16=0616;+g ~ N(©,2057).

Gongalves (UCL) 12. Incomplete Information
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Higher-Order Beliefs

Coordination Game (bank runs, currency attacks)

Col Player
Invest  Not Invest
Row Player Invest 0,0 06-10
Not Invest 0,0 -1 0,0

Incomplete Information
Suppose both players observe a signal about the state 6.
0, =0 +¢g, & ~ N(0,062) iid.
016, ~ N(6;,6%), because = 6, — ¢;
016,:=6106+¢16=0616;+g ~ N(©,2057).
Implicitly, this is saying that players have uninformative or improper prior on 6 that is

uniform over the real line.
Why improper? because there is no uniform distribution over the real line; it cannot

add-up to one if it has a constant pdf.
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Higher-Order Beliefs

Incomplete Information
016, ~ N(8;,6%) and 6 | 8; ~ N(6;, 267).

Gongalves (UCL) 12. Incomplete Information
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Higher-Order Beliefs

Incomplete Information
016, ~ N(8;,6%) and 6 | 8; ~ N(6;, 267).
Claim: s;(6;) := 1{8; > 1/2} is an equilibrium.
e Givens; = {6; > 1/2}, player i's payoff to investing conditional on 6; and s; is

1/2 - 6;
9,“P(9]§1/2|9/'):9,'—(D< \/i(y,)

strictly increasing in 8; and zero when 6, = 1/2.
e 5i(6;) == 1{8; > 1/2} is the unique best response to s;.
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33



Higher-Order Beliefs

Incomplete Information
016, ~ N(8;,6%) and 6 | 8; ~ N(6;, 267).
WTS Proposition: In any eqm, s;(6;) = Ta.e. on (1/2, 00) and s;(;) = 0 a.e. on (—o0, 1/2).

Gongalves (UCL) 12. Incomplete Information
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Higher-Order Beliefs

Incomplete Information

016, ~ N(8;,6%) and 6 | 8; ~ N(6;, 267).

WTS Proposition: In any eqm, s;(6;) = Ta.e. on (1/2, 00) and s;(;) = 0 a.e. on (—o0, 1/2).
Preliminaries: Define f(8;,8) := 6, - ® (f;;(;)
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Higher-Order Beliefs

Incomplete Information

016, ~ N(8;,6%) and 6 | 8; ~ N(6;, 267).

WTS Proposition: In any eqm, s;(6;) = Ta.e. on (1/2, 00) and s;(;) = 0 a.e. on (—o0, 1/2).
Preliminaries: Define f(8;,8) := 6, - ® (f;;(;)

. . 0 N = 9/—9, 6791 L) = 6791
Note: P(6; <816) =P (U0 < L 16;) =@ (75%)
f(6;,8) is continuous in (6;, 8), strictly increasing in 8;, and strictly decreasing in 6.
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Higher-Order Beliefs

Incomplete Information

016, ~ N(8;,6%) and 6 | 8; ~ N(6;, 267).

WTS Proposition: In any eqm, s;(6;) = Ta.e. on (1/2, 00) and s;(;) = 0 a.e. on (—o0, 1/2).
Preliminaries: Define f(8;,8) := 6, - ® (f;;(;)
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Higher-Order Beliefs

Incomplete Information

016, ~ N(8;,6%) and 6 | 8; ~ N(6;, 267).

WTS Proposition: In any eqm, s;(6;) = Ta.e. on (1/2, 00) and s;(;) = 0 a.e. on (—o0, 1/2).
.. .. A - — 6-6;

Preliminaries: Define (6;,0) = 6, - ® (ﬁ0>

Claim: VO,- > 1, E[U,‘(/, Sj(ej), 6)|9,] = 6,- - E[Sj(ej)|e,] > 0.
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Higher-Order Beliefs

Incomplete Information
016, ~ N(8;,6%) and 6 | 8; ~ N(6;, 267).

WTS Proposition: In any eqm, s;(8;) = Ta.e. on (1/2,00) and s;(8;) = 0 a.e. on (-

Preliminaries: Define f(8;,8) := 6, - ® (?/%1)

Claim: v6; > 1, E[u;(/, ;(6)), 8)6;] = 6; — Els;(6;)I6;] > 0.
o Note that: V5 > 0, f(6;,6) > SVG, >1+8and V8.
e Then ve; > 1, E[u;(/,5(8)), 0)16]] = 6; — Els;(6))16;] > 6; = (6}, —o0) > 0
(where f(8;, —o0) = lim f(8;,8)).

6—>oo
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Higher-Order Beliefs

Incomplete Information

016, ~ N(8;,6%) and 6 | 8; ~ N(6;, 267).

WTS Proposition: In any eqm, s;(6;) = Ta.e. on (1/2, 00) and s;(;) = 0 a.e. on (—o0, 1/2).
.. .. A - — 6-6;

Preliminaries: Define (6;,0) = 6, - ® (ﬁ0>

Claim: VO,- > 1, E[U,‘(/, Sj(ej), 6)|9,] = 6,- - E[Sj(ej)|e,] > 0.
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Higher-Order Beliefs

Incomplete Information

016, ~ N(8;,6%) and 6 | 8; ~ N(6;, 267).

WTS Proposition: In any eqm, s;(6;) = Ta.e. on (1/2, 00) and s;(;) = 0 a.e. on (—o0, 1/2).
.. .. A - — 6-6;

Preliminaries: Define (6;,0) = 6, - ® (ﬁ0>

Claim: VO,- > 1, E[U,‘(/, Sj(ej), 6)|9,] = 6,- - E[Sj(ej)|e,] > 0.

Fork =1,2, .., define 7 - inf{G,-lf(e[ﬁk) > 0}, where 9 =1
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Higher-Order Beliefs

Incomplete Information

016, ~ N(8;,6%) and 6 | 8; ~ N(6;, 267).

WTS Proposition: In any eqm, s;(6;) = Ta.e. on (1/2, 00) and s;(;) = 0 a.e. on (—o0, 1/2).
.. .. A - — 6-6;

Preliminaries: Define (6;,0) = 6, - ® (ﬁ0>

Claim: VO,- > 1, E[U,‘(/, Sj(ej), 6)|9,] = 6,- - E[Sj(ej)|e,] > 0.

Fork =1,2, .., define 7 - inf{e;|f(e;, §k) > 0}, where 9 =1
Claim: 8 > 8" vk.
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Higher-Order Beliefs

Incomplete Information
016, ~ N(8;,6%) and 6 | 8; ~ N(6;, 267).

WTS Proposition: In any eqm, s;(6;) = Ta.e. on (1/2, 00) and s;(;) = 0 a.e. on (—o0, 1/2).
R A —a (66

Preliminaries: Define f(6;,0) := 6; @(ﬁc)
Claim: v, > 1, E[u;(/, sj( ) 0)6;] = 6; — Els;(6))I6;] > 0.
Fork =1,2, .., define 7 - inf{G,-lf(e[ﬁk) > 0}, where 9 =1
Claim: 8" > 8" vk.

e Truefork =0.

o Induction: 8" <8 — 0=f@"28"") =r@",8) < r@", 8"

- - f strictly decreasing in 2nd argument and 7 <8¢
o f(§k+2,§k+1) < f(@kﬂ,ﬁkﬂ) — 82 . f strictly increasing in 1st argument.
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Higher-Order Beliefs

Incomplete Information

016, ~ N(8;,6%) and 6 | 8; ~ N(6;, 267).

WTS Proposition: In any eqm, s;(6;) = Ta.e. on (1/2, 00) and s;(;) = 0 a.e. on (—o0, 1/2).
.. .. A - — 6-6;

Preliminaries: Define (6;,0) = 6, - ® (ﬁ0>

Claim: VO,- > 1, E[U,‘(/, Sj(ej), 6)|9,] = 6,- - E[Sj(ej)|e,] > 0.

Fork =1,2, .., define 7 - inf{e;|f(e;, §k) > 0}, where 9 =1
Claim: 8 > 8" vk.
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Higher-Order Beliefs

Incomplete Information

016, ~ N(8;,6%) and 6 | 8; ~ N(6;, 267).

WTS Proposition: In any eqm, s;(6;) = Ta.e. on (1/2, 00) and s;(;) = 0 a.e. on (—o0, 1/2).
.. .. A - — 6-6;

Preliminaries: Define (6;,0) = 6, - ® (ﬁ0>

Claim: VO,- > 1, E[U,‘(/, Sj(ej), 6)|9,] = 6,- - E[Sj(ej)|e,] > 0.

Fork =1,2, .., define 7 - inf{e;|f(e;, §k) > 0}, where 9 =1
Claim: 8 > 8" vk.
Claim: (Induction step) If s;(6)) = 1v6; > 8" then ve; > Cal Elui(/,s(6)), 6)l6;] > 0.
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Higher-Order Beliefs

Incomplete Information
016, ~ N(8;,6%) and 6 | 8; ~ N(6;, 267).

WTS Proposition: In any eqm, s;(8;) = Ta.e. on (1/2,00) and s;(8;) = 0 a.e. on (-

Preliminaries: Define f(8;,8) := 6, - ® (f;;(;)

Claim: v, > 1, E[u;(/, sj( ) 0)6;] = 6; — Els;(6))I6;] > 0.

Fork =1,2, .., define 7 - inf{G,-lf(e[ﬁk) > 0}, where 9 =1

Claim: 8° > 8" vk.

Claim: (Induction step) If 5;(6;) = 1v6; > 8" then ve; > Cal Elui(/,5,(6)),0)I6,] >

o vo; > 8" Elu(,5,(6)), 6)18] > (6,8 > 0 = "8
- fis strictly increasing in Ist arg.
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Higher-Order Beliefs

Incomplete Information

0 16; ~ N(8;,6%) and 6 | ©; ~ N(8;, 267).

WTS Proposition: In any eqm, s;(8;) = 1a.e. on (1/2,00) and s;(6;) = 0 a.e. on (o0, 1/2).
Preliminaries: Define f(9;,8) := 6, - ® (%).

Claim: v6; > 1, E[u;(/, 5;(6)), 8)I6;] = 6; — Els;(6;)I6;] > 0.

Fork =12 ., define @ = inf{e,-lf(e,-,ék) > 0}, where 8 =1

Claim: 8 > 8" vk.

Claim: (Induction step) If s;(6;) = 1v6; > e then vo; > 8 Elui(/,s(8)), 6)l6;] > 0.
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Higher-Order Beliefs

Incomplete Information
0 16; ~ N(8;,6%) and 6 | ©; ~ N(8;, 267).

WTS Proposition: In any eqm, s;(8;) = 1a.e. on (1/2,00) and s;(6;) = 0 a.e. on (o0, 1/2).

Preliminaries: Define f(9;,8) := 6, - ® (%).

Claim: v6; > 1, E[u;(/, 5;(6)), 8)I6;] = 6; — Els;(6;)I6;] > 0.

Fork =12 ., define @ = inf{e,-lf(e,-,ék) > 0}, where 8 =1

Claim: 8 > 8" vk.

Claim: (Induction step) If s;(6;) = 1v6; > e then vo; > 8 Elui(/,s(8)), 6)l6;] > 0.
Claim: At any BNE s, 5;(8;) = Ta.e. on 6; > 8 ,forallkandi=1,2.

Gongalves (UCL) 12. Incomplete Information
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Higher-Order Beliefs

Incomplete Information
0 16; ~ N(8;,6%) and 6 | ©; ~ N(8;, 267).
WTS Proposition: In any eqm, s;(8;) = 1a.e. on (1/2,00) and s;(6;) = 0 a.e. on (—o0,1/2).

Preliminaries: Define f(9;,8) := 6, - ® (%).

Claim: v6; > 1, E[u;(/, 5;(6)), 8)I6;] = 6; — Els;(6;)I6;] > 0.
Fork =12 ., define @ = inf{e,-lf(e,-,ék) > 0}, where 8 =1
Claim: 8 > 8" vk.
Claim: (Induction step) If s;(6;) = 1v6; > e then vo; > 8 Elui(/,s(8)), 6)l6;] > 0.
Claim: At any BNE s, s;(6;) = 1a.e.on 8, > 0 ,for allkandi=1,2.
e Truefork =1, E[u;(/,5,(6)),6)I6;] > 6; = 1> 0 for any 6; > 8 = 1,no matter s;.
e Then, forany s; : s/(6;) 7 1for a positive measure of 6; > 8'is strictly dominated by
s;st.sj=s/on (—00,51] ands; =1on (51, 00).
e Iterating the argument, for any k, for any s; : s/(6;) 7 1 for a positive measure of
;> 8 is iteratedly strictly dominated by s; s.t. s; = s/ on (—oo,ﬁk] ands; =1on
8", 0).
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Preliminaries: Define f(6;,0) .= 6, - ® (ﬁc)

Claim: VO,- > 1, E[U/(/, Sj(ej), 9)|9,] = 9,‘ - E[s/(ej)le,] > 0.

Fork=12,.,defined " = inf{e,-lf(e,-ﬁk) > 0}, where 8 =1
Claim: 8 > 8" vk.
Claim: (Induction step) If s;(6)) = 1v6; > 8" then ve; > g Elu;(l, s;(6)), 0)16,] > 0.
Claim: At any BNE s, s;(8;) = Ta.e. on 6; > ék, forallkandi=1,2.
Claim: 8 > 0 Vk.
o Note that: V8 > 0, f(6;,8) < -8 v6; < -8 and V8.
o Then v, < 0, E[u;(/5;(6)),0)10] = 6; — Els;(6))16] < 6; = f(8;,00) < 0
(where f(6;, 00) := limg_, __ 1(8;,6)).
o Th?(n, as f(@k,ﬁk) >0> f(O,@k) and f is strictly increasing in 1st argument, then
0 >0 Vk.
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Higher-Order Beliefs

Incomplete Information

016, ~ N(8;,6%) and 6 | 8; ~ N(6;, 267).

WTS Proposition: In any eqm, s;(6;) = Ta.e. on (1/2, 00) and s;(;) = 0 a.e. on (—o0, 1/2).
.. .. A - — 6-6;

Preliminaries: Define (6;,0) = 6, - ® (ﬁ0>

Claim: VO,- > 1, E[U,‘(/, Sj(ej), 6)|9,] = 6,- - E[Sj(ej)|e,] > 0.

Fork =1,2, .., define 7 - inf{G,-lf(efﬁk) > 0}, where 9 =1

Claim: 8° > 8" vk.

Claim: (Induction step) If s;(6)) = 1v6; > 8 then ve; > Rl Elui(/,s(6)), 6)l6;] > 0.
Claim: At any BNE s, s;(8;) = Ta.e. on 6; > ék, forallkandi=1,2.

Claim: 8" > 0 Vk.

Claim: lim,._, .. 8" =1/2.

. {ék}k decreasing sequence, bounded below by 0 = it converges to some

8™ > 0, by monotone convergence theorem.
e 0= limo 67,8 = 167,87 =87~ (T 87) =57 ~12
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Higher-Order Beliefs

Incomplete Information
016, ~ N(8;,6%) and 6 | 8; ~ N(6;, 267).
WTS Proposition: In any eqm, s;(6;) = 1a.e. on (1/2, c0) and s;(6;) = 0 a.e. on (-0, 1/2).

Preliminaries: Define f(8;,8) := 6, - ® (?/%1)

Fully symmetric arguments:
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Higher-Order Beliefs

Incomplete Information
016, ~ N(8;,6%) and 6 | 8; ~ N(6;, 267).

WTS Proposition: In any eqm, s;(8;) = Ta.e. on (1/2,00) and s;(8;) = 0 a.e. on (-

Preliminaries: Define f(8;,8) := 6, - ® (f;;(;)

Fully symmetric arguments:

Claim: v6; < 0, E[u;(/, 5;(8;), 0)16,] = 6; — E[s;(8;)I6/] < 0.

Fork =1,2, ..., define Qk” = sup{e,-lf(G,-,Qk) < 0}, where o' =0

Claim: 6% < 6K T vk.

Claim: (Induction step) If 5;(6;) = 0V6; < 6, then v8; < 8*1 E[u;(1, 5,(6)), 0)16]] <
Claim: Atany BNE s, 5,(6;) = 0 a.e. on6; < 6%, forallkand i = 1,2.

Claim: ¢ kK< 0wk

Claim: limj_, . 8% = 1/2.
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Higher-Order Beliefs

Incomplete Information

0 16; ~ N(8;,6%) and 6 | 8; ~ N(8;, 267).

Proposition: In any eqm, s;(6,) = 1a.e. on (1/2, c0) and s;(6;) = 0 a.e. on (-0, 1/2).
NB: proposition holds Ve. Taking ¢ | 0 selects unique NE.

Global game approach to selection of NE.
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Higher-Order Beliefs

Why higher-order beliefs?
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Why higher-order beliefs?

Player i will invest if 6; is high enough, regardless of whether j invests.
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Why higher-order beliefs?
Player i will invest if 6; is high enough, regardless of whether j invests.
Player i knows player j will also invest if 8; is high enough.

That makes Player i more amenable to investing at lower threshold for 6;, as j will invest
regardless of what i does for high enough 6;.
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Higher-Order Beliefs

Why higher-order beliefs?
Player i will invest if 6; is high enough, regardless of whether j invests.
Player i knows player j will also invest if 8; is high enough.

That makes Player i more amenable to investing at lower threshold for 6;, as j will invest
regardless of what i does for high enough 6;.

Iterating the argument on players’ beliefs has higher-order beliefs working in the
background to refine what the opponent will do.

Common knowledge of rationality is doing all the heavy-lifting in determining how
players behave!
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Overview

7. More



More

The Originals: Harsanyi (1967 MnSc, 1968 MnSc, 1973 IJGT).
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More

The Originals: Harsanyi (1967 MnSc, 1968 MnSc, 1973 IJGT).

Auctions: Milgrom (1981 Ecta, 2003), Myerson (1981 MOR), Athey & Haile (2002 Ecta).
Auctions with budgets: e.g., Ghosh (2021 GEB).

Global Games: Morris & Shin (1998 AER, 2002 AER).
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The Originals: Harsanyi (1967 MnSc, 1968 MnSc, 1973 IJGT).

Auctions: Milgrom (1981 Ecta, 2003), Myerson (1981 MOR), Athey & Haile (2002 Ecta).
Auctions with budgets: e.g., Ghosh (2021 GEB).

Global Games: Morris & Shin (1998 AER, 2002 AER).

Other Topics: Voting (Feddersen & Pesendorfer, 1997 Ecta), Media Bias (Gentzkow &
Shapiro, 2006 JPE).

No-Trade Theorem: Milgrom & Stokey (1982 JET).

Experiments: Winner's curse Charness & Levin (2009 AEJMicro), Overbidding and QRE:
Goeree, Holt, & Palfrey (2002 JET); Camerer, Nunnari, & Palfrey (2016 GEB); and
Charness, Levin, & Schmeidler (2019 JET).
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